Depression Detection Using Stacked Autoencoder From Facial Features And NLP

Author:

Kumar Ravi1,Nagar Santosh Kumar2,Shrivastava Anurag3

Affiliation:

1. MTech Scholar Department of CSE NIIST, Bhopal, India

2. Assistant Professor Department of CSE NIIST, Bhopal, India

3. Associate Professor Department of CSE NIIST, Bhopal, India

Abstract

Depression has become one of the most common mental illnesses in the past decade, affecting millions of patients and their families. However, the methods of diagnosing depression almost exclusively rely on questionnaire-based interviews and clinical judgments of symptom severity, which are highly dependent on doctors’ experience and makes it a labor-intensive work. This research work aims to develop an objective and convenient method to assist depression detection using facial features as well as textual features. Most of the people conceal their depression from everyone. So, an automated system is required that will pick out them who are dealing with depression. In this research, different research work focused for detecting depression are discussed and a hybrid approach is developed for detecting depression using facial as well as textual features. The main purpose of this research work is to design and propose a hybrid system of combining the effect of three effective models: Natural Language Processing, Stacked Deep Auto Encoder with Random forest (RF) classifier and fuzzy logic based on multi-feature depression detection system. According to literature several fingerprint as well as fingervein recognition system are designed that uses various techniques in order to reduce false detection rate and to enhance the performance of the system. A comparative study of different recognition technique along with their limitations is also summarized and optimum approach is proposed which may enhance the performance of the system. The result analysis shows that the developed technique significantly advantages over existing methods.

Publisher

Smart Moves

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3