Effects of simulated microgravity on the morphology of mouse embryonic fibroblasts (MEFs)

Author:

SON HOANG NGHIA, ,CHI HO NGUYEN QUYNH,THANH LE NGOC PHUONG,HAN TRUONG THI,HAN NGUYEN THAI MINH,CHUNG DOAN CHINH,LONG LE THANH

Abstract

This study aimed to assess the effects of simulated microgravity on mouse embryonic fibroblast (MEF) morphology. The results showed that the area of MEFs under simulated microgravity was 7843.39 ± 551.31 µm2 which was lower than the control group (9832.72 ± 453.86 µm2). The nuclear area of MEFs under simulated microgravity (290.76 ± 4.58 µm2) and the control group (296.8 ± 4.58 µm2) did not statistically differ. In addition, the nuclear shape value of the MEFs under simulated microgravity and the control group did not statistically differ (0.86 ± 0.006 vs. 0.87 ± 0.003, respectively). The nuclear intensity of MEFs under simulated microgravity (19361 ± 852) was higher than the control group (16997 ± 285). Moreover, the flow cytometry analysis indicated the reduced G0/G1 phase cell ratio and the increased S phase and G2/M phase cell ratio in MEFs under simulated microgravity. Simulated microgravity also induced a decrease in diameter of actin filament bundles of the MEFs under simulated microgravity (1.61 ± 0.33 µm) compared to the control group (1.79 ± 0.32 µm). These results revealed that simulated microgravity is capable of inducing the morphological changes of mouse embryonic fibroblasts.

Publisher

Digital ProScholar Media

Subject

Agronomy and Crop Science,Genetics,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3