Achieving simultaneously high energy and power densities in an asymmetric supercapacitor with the fe3o4/gns electrode combination

Author:

Xie Jichun1

Affiliation:

1. University of Illinois at Urbana-Champaign, 610 East John Street, Champaign, IL, USA 61820

Abstract

With our growing need for highly efficient energy supplies, a demand for new devices with better energy conversion and storage capabilities arises. Asymmetric supercapacitors combining a pseudocapacitive and an EDLC electrode show great potential as a prospective energy storage device. The relatively broad voltage window and low cost of iron (II, III) oxide and the eminent properties of graphene nanosheets (high electrical conductivity, large surface area, etc.) make them ideal candidates for the electrode materials of supercapacitors. An asymmetric supercapacitor using iron (II, III) oxide as the anode and graphene nanosheets the cathode with an aqueous electrolyte of 3 M potassium hydroxide was proposed here. Iron (II, III) oxide nanoparticles were synthesized from FeCl36H2O using a hydrothermal approach. Graphene nanosheets were prepared from fine-grained graphite raw materials via Hummers method. The electrochemical performance of the device was characterized using a triple-electrode setup, with the electrodes being submerged in a medium of 6 M KOH. This specific asymmetrical supercapacitor shows promise as a practical foundation towards a future of more effective energy transformation and storage, such as line-filtering and signal selection, particularly due to the relative abundance and environmentally-friendly nature of its electrode materials.

Publisher

EWA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stock closing price prediction based on ICEEMDAN-FA-BiLSTM–GM combined model;International Journal of Machine Learning and Cybernetics;2024-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3