Dynamic resource allocation for virtual machine migration optimization using machine learning

Author:

Gong Yulu1,Huang Jiaxin2,Liu Bo3,Xu Jingyu4,Wu Binbin5,Zhang Yifan6

Affiliation:

1. Northern Arizona University

2. Trine University

3. Zhejiang University

4. Computer Information Technology, Independent Researcher

5. Computer Network Engineering, Cisco Systems

6. Executive Master of Business Administration, Amazon Connect Technology Services (Beijing) Co. Ltd

Abstract

This article delves into the importance of applying machine learning and deep reinforcement learning techniques in cloud resource management and virtual machine migration optimization, highlighting the role of these advanced technologies in dealing with the dynamic changes and complexities of cloud computing environments. Through environment modeling, policy learning, and adaptive enhancement, machine learning methods, especially deep reinforcement learning, provide effective solutions for dynamic resource allocation and virtual intelligence migration. These technologies can help cloud service providers improve resource utilization, reduce energy consumption, and improve service reliability and performance. Effective strategies include simplifying state space and action space, reward shaping, model lightweight and acceleration, and accelerating the learning process through transfer learning and meta-learning techniques. With the continuous progress of machine learning and deep reinforcement learning technologies, combined with the rapid development of cloud computing technology, it is expected that the application of these technologies in cloud resource management and virtual machine migration optimization will be more extensive and in-depth. Researchers will continue to explore more efficient algorithms and models to further improve the accuracy and efficiency of decision making. In addition, with the integration of edge computing, Internet of Things and other technologies, cloud computing resource management will face more new challenges and opportunities, and the application scope and depth of machine learning and deep reinforcement learning technology will also expand, opening new possibilities for building a more intelligent, efficient and reliable cloud computing service system.

Publisher

EWA Publishing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3