Clustering Productive Palm Land using the K- Means Clustering Algorithm

Author:

Sihite Geofanny Widianto,Eka Prasetyaningrum

Abstract

Indonesia is a country with a tropical climate that has many oil palm plantations. CV. Alkema Deo is one of the companies that manage oil palm plantations in Sampit City, East Kotawaringin Regency, Central Kalimantan. CV. Alkema Deo was founded in 2016 and has two plantation locations located on Jl. General Sudirman Km. 18, East Kotawaringin and Seibabi Village, Telawang District, East Kotawaringin. In this study, a qualitative approach was applied using a descriptive research pattern. In qualitative research, data is obtained from sources using various data collection techniques. Research using qualitative methods emphasizes the analysis of thought processes related to the dynamics of the relationship between observed phenomena, and always uses scientific logic. Based on the results of research for authors on a CV. Alkema Deo, the use of Excel in companies is quite good at processing data, but on a CV. Alkema Deo does not yet have land groupings based on productivity levels, so it is difficult to see the level achieved in 6 months based on the set target, and daily production control in terms of area and block area. Data obtained from CV. Alkema Deo is grouped based on area, block, and productivity. Application of data mining for grouping productive oil palm land on a CV. Alkema Deo with 4 variables, namely: land area, length, average production yield, percentage of achievement using the K-Means Algorithm to produce three clusters, namely 8 blocks or 50% including the high productive group (C2), 1 block or 6% blocks including the medium productive plantation group (C1), and 7 blocks or 44% including the small productive plantation group (C0).

Publisher

Politeknik Negeri Cilacap

Reference16 articles.

1. A. Syahrial, S. Prayoga, and W. D. Hidayat, “Pengelompokan Lahan Sawit Produktif Menggunakan Metode K-Means Clustering Pada PT Kasih Agro Mandiri,” 2021.

2. S. Sadya, “Perkebunan Kelapa Sawit Indonesia Capai 14,62 Juta Ha pada 2021,” dataindonesia.id, 2022. https://dataindonesia.id/agribisnis-kehutanan/detail/perkebunan-kelapa-sawit-indonesia-capai-1462-juta-ha-pada-2021 (accessed Dec. 05, 2022).

3. Tim Publikasi, “Kotawaringin Timur, Kabupaten dengan Lahan Sawit Terluas di Indonesia,” https://databoks.katadata.co.id/, 2019. https://databoks.katadata.co.id/datapublish/2019/10/24/kotawaringin-timur-kabupaten-dengan-lahan-sawit-terluas-di-indonesia (accessed Oct. 24, 2019).

4. B. Poerwanto and R. Y. Fa’rifah, “Algoritma k-means dalam mengelompokkan kecamatan di tana luwu berdasarkan produktifitas hasil pertanian,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.

5. S. Junia Sindy, “Penerapan Metode K-Means Clustering Untuk Menentukan Status Mutu Produksi Buah Kelapa Sawit Pada PT Sawit Asahan Indah (SAI),” Diss. Univ. Pasir Pengaraian, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3