An AIoT-Based Automated Farming Irrigation System for Farmers in Limpopo Province

Author:

Langa Relebogile,Moeti Michael Nthabiseng,Maubane Thabiso

Abstract

Limpopo, one of South Africa's nine provinces, is mostly rural, where agriculture serves as the primary occupation for around 89 percent of the total population. Agriculture relies on water, making it its most valuable asset. Through irrigation, water is supplied to crops for growth, frost control, and crop cooling. Irrigation can occur naturally, as with precipitation, or artificially, as with sprinklers. However, artificial irrigation is wasteful as it is regulated and monitored through human intervention, leading to water scarcity which is one of the obstacles that threatens the agricultural sector in the province of Limpopo. A machine learning precipitation prediction algorithm optimizes water usage. The paper also describes a system with multiple sensors that detect soil parameters, and automatically irrigate land based on soil moisture by switching the motor on/off. The objective of this paper is to develop an automated farming irrigation system that is both efficient and effective, with the intention of contributing to the resolution of the water crisis in the province of Limpopo. The proposed solution ought to be capable of decreasing labour hours, generating cost savings, ensuring consistent and efficient water usage, and gathering informed data to inform future research. Thus, farmers will have greater access to information regarding when to irrigate, how much water to use, weather alerts, and recommendations. In acquiring these, the ARIMA model was applied alongside DSRM for implementing the mobile application. The results obtained indicate that the use of AI and IoT (AIoT) in agriculture can improve operational efficiency with reduced human intervention as there is real-time data acquisition with real-time processing and predictions.

Publisher

Politeknik Negeri Cilacap

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3