Abstract
In the present paper firstly, we introduce classes of anti-paraK\"{a}hler-Codazzi manifolds and we discuss the problem of integrability for almost paracomplex structures on thes manifolds. Secondly, we introduce a new classes of anti-paraHermitian manifolds associated with these anti-paraHermitian metric connections with torsion, we look for the conditions in which it becomes are anti-paraK\"{a}hler manifolds or anti-paraK\"{a}hler-Codazzi manifolds.
Publisher
Turkish Journal of Mathematics and Computer Science, Association of Mathematicians
Reference8 articles.
1. Cruceanu, V., Fortuny,P., Gadea, P.M., {\em A survey on paracomplex geometry}, Rocky Mountain J. Math. \textbf{26}(1)(1996), 83--115. \url{doi:10.1216/rmjm/1181072105}
2. De Le\'{o}n, M., Rodrigues, P.R., Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 1989.
3. Iscan, M., Salimov, A.A., {\em On K\"{a}hler-Norden manifolds}, Proc. Indian Acad. Sci. (Math. Sci.) \textbf{119}(1) (2009), 71--80.
4. Salimov, A.A., Gezer, A., Iscan, M., {\em On para-K\"{a}hler-Norden structures on the tangent bundles}, Ann. Polon. Math. 103, 3 (2012), 247–261. DOI: 10.4064/ap103-3-3
5. Salimov, A. , Iscan, M., Etayo, F., {\em Paraholomorphic B-manifold and its properties}, Topology Appl., \textbf{154}(4)(2007), 925--933 . \url{https://doi.org/10.1016/j.topol.2006.10.003}