Affiliation:
1. KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ
Abstract
In this paper, we investigate the following general difference equations
\begin{equation*}
x_{n+1}=h^{-1}\left( h\left( x_{n}\right) \frac{Ah\left( x_{n-1}\right)+Bh\left( x_{n-2}\right) }{Ch\left( x_{n-1}\right)+Dh\left( x_{n-2}\right)}\right) ,\ n\in \mathbb{N}_{0},
\end{equation*}
where the parameters $A, B, C, D$ and the initial values $x_{-\Phi}$, for $\Phi=\overline{0,2}$ are real numbers, $h$ is a continuous and strictly monotone function, $h\left( \mathbb{R}\right) =\mathbb{R}$, $h\left( 0\right) =0$. In addition, we obtain closed-form solutions of aforementioned difference equations. Finally, numerical applications are given.
Publisher
Turkish Journal of Mathematics and Computer Science, Association of Mathematicians
Reference35 articles.
1. Abo-Zeid, R., Kamal, H., Global behavior of two rational third order difference equations, Univers. J. Math. Appl., 2(4)(2019), 212–217.
2. Abo-Zeid, R., Global behavior and oscillation of a third order difference equation, Quaest. Math., 44(9)(2021), 1261–1280.
3. Almatrafi, M.B., Elsayed, E.M., Alzahrani, F., Qualitative behavior of two rational difference equations, Fundam. J. Math. Appl., 1(2)(2018), 198–204.
4. De Moivre, A., The Doctrine of Chances, 3nd edition, In Landmark Writings in Western Mathematics, London, 1756.
5. Elabbasy, E.M., Elsayed, E.M., Dynamics of a rational difference equation, Chin. Ann. Math., 30(2)(2009), 187–198.