Abstract
In this paper, we concentrate on hyper generalized $\varphi-$recurrent $\alpha-$cosymplectic manifolds and quasi generalized $\varphi-$recurrent $\alpha-$cosymplectic manifolds and obtain some significant characterizations which classify such manifolds.
Publisher
Turkish Journal of Mathematics and Computer Science, Association of Mathematicians
Reference14 articles.
1. \bibitem{Blair:1} D. E. Blair, {\em Contact Manifolds in Riemannian Geometry}, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1976.
2. \bibitem{De:1} {U. C. De, N. Guha, D. Kamilya,}, {\em On generalized Ricci-recurrent manifolds}, {Tensor N.S.} {\bf56} (1995), 312-317.
3. \bibitem{Erken:1} {\.I. K. Erken}, {\em On a Classification of Almost $\alpha-$Cosymplectic Manifolds}, {Khayyam. J. Math.} {\bf5(1)} (2019), 1-10.
4. \bibitem{Goldberg:1} S. I. Goldberg, K. Yano, {\em Integrability of Almost Cosymplectic Structures}, {Pasific J. Math.} {\bf31} (1969), 373-382.
5. \bibitem{Janssens:1} D. Janssens, L. Vanhecke, {\em Almost Contact Structures and Curvature Tensors}, {Kodai Math. J.}, {\bf4} (1981), 1-27.