Cerebral Oxygenation Responses to Aerobatic Flight

Author:

Fresnel Eléonore,Dray Gérard,Pla Simon,Jean Pierre,Belda Guilhem,Perrey Stéphane

Abstract

BACKGROUND: Aerobatic pilots must withstand high and sudden acceleration forces (Gz) up to 10 Gz. The physiological consequences of such a succession of high and abrupt positive and negative Gz on the human body over time remain mostly unknown. This case report emphasizes changes in physiological factors such as cerebral oxygenation and heart rate dynamics collected in real aerobatic flights.CASE REPORT: A 37-yr-old man, experienced in aerobatic flying, voluntarily took part in this study. During two flight runs (15-20 min), the pilot performed aerobatic maneuvers with multiple high (10 Gz) positive and negative accelerations. During the flights he wore a Polar heart rate sensor while cerebral oxygenation was measured continuously over his prefrontal cortex via near-infrared spectroscopy (NIRS). NIRS allows for measurement of the relative concentration changes of oxygenated hemoglobin (O2Hb) and deoxygenated hemoglobin (HHb), making it possible to determine cerebral oxygenation and hemodynamic status.DISCUSSION: The continuous in-flight monitoring of O2Hb and HHb revealed the large effects of successive positive and negative Gz exposures on cerebral hemodynamics alterations. The results showed a significant and positive correlation between changes in Gz exposures and O2Hb concentration. This case report highlights that NIRS provides some valuable and sensitive indicators for the monitoring of cerebral hemodynamics during aerobatic flights exposed to multiple and high acceleration forces. To our knowledge, this first study quantifying cerebral oxygenation changes in aerobatics opens the way for the assessment of individual physiological responses and tolerance in pilots to repeated high Gz during real flights.Fresnel E, Dray G, Pla S, Jean P, Belda G, Perrey S. Cerebral oxygenation responses to aerobatic flight. Aerosp Med Hum Perform. 2021; 92(10):838-842.

Publisher

Aerospace Medical Association

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3