Author:
Boppana Abhishektha,Priddy Steven T.,Stirling Leia,Anderson Allison P.
Abstract
INTRODUCTION: Heel-lift is a subjectively reported fit issue in planetary spacesuit boot prototypes that has not yet been quantified. Inertial measurement units (IMUs) could quantify heel-lift but are susceptible to integration drift. This work evaluates the use of IMUs and drift-correction
algorithms, such as zero-velocity (ZVUs) and zero-position updates (ZPUs), to quantify heel-lift during spacesuited gait.METHODS: Data was originally collected by Fineman et al. in 2018 to assess lower body relative coordination in the spacesuit. IMUs were mounted on the spacesuit
lower legs (SLLs) and spacesuit operator’s shank as three operators walked on a level walkway in three spacesuit padding conditions. Discrete wavelet transforms were used to identify foot-flat phase and heel-off for each step. Differences in heel-off timepoints were calculated in each
step as a potential indicator of heel-lift, with spacesuit-delayed heel-off suggesting heel-lift. Average drift rates were estimated prior to and after applying ZVUs and ZPUs.RESULTS: Heel-off timepoint differences showed instances of spacesuit-delayed heel-off and instances of
operator-delayed heel-off. Drift rates after applying ZVUs and ZPUs suggested an upper time bound of 0.03 s past heel-off to measure heel-lift magnitude with an accuracy of 1 cm.DISCUSSION: Results suggest that IMUs may not be appropriate for quantifying the presence and magnitude
of heel lift. Operator-delayed heel-off suggests that the SLL may be expanding prior to heel-off, creating a false vertical acceleration signal interpreted by this study to be spacesuit heel-off. Quantifying heel-off will therefore require improvements in IMU mounting to mitigate the effects
of SLL, or alternative sensor technologies.Boppana A, Priddy ST, Stirling L, Anderson AP. Challenges in quantifying heel-lift during spacesuit gait. Aerosp Med Hum Perform. 2022; 93(8):643–648.
Publisher
Aerospace Medical Association
Reference13 articles.
1. The frequency content of gait;J Biomech.,1985
2. Walking-speed estimation using a single inertial measurement unit for the older adults;PLoS One.,2019
3. Pedestrian tracking using inertial sensors;Journal of Physical Agents.,2009