Cabin Pressure Altitude Effect on Acceleration Atelectasis After Agile Flight Breathing 60% Oxygen

Author:

Tank Henry,Kennedy Gareth,Pollock Ross,Hodkinson Peter,Sheppard-Hickey Rebecca-Anne,Woolford Jeffrey,Green Nicholas D. C.,Stevenson Alec

Abstract

INTRODUCTION: A flight trial was conducted to determine whether breathing 60% oxygen during high performance flight maneuvers using contemporary pilot flight equipment induces atelectasis and to explore whether cabin altitude had any influence on the extent of atelectasis identified.METHODS: On 2 separate days, 14 male aircrew flew as passengers at High [14,500–18,000 ft (4420–5486 m)] and Low [4000–6000 ft (1219–1829 m)] cabin pressure altitude in a Hawk T Mk1 aircraft breathing 60% oxygen. Sorties comprised 16 maneuvers at +5 Gz, each sustained for 30 s. Lung volumes (spirometry), basal lung volume (electrical impedance tomography, EIT), and peripheral oxygen saturation during transition from hyperoxia to hypoxia (pulmonary shunt fraction) were measured in the cockpit immediately before (Pre) and after (Post) flight.RESULTS: Forced inspiratory vital capacity (FIVC) was significantly lower Postflight after High (−0.24 L) and Low (−0.38 L) sorties, but recovered to Preflight values by the fourth repeat (FIVC4). EIT-derived measures of FIVC decreased after High (−3.3%) and Low (−4.4%) sorties but did not recover to baseline by FIVC4. FIVC reductions were attributable to decreased inspiratory capacity. Spo2 was lower Postflight than Preflight in High and Low sorties.DISCUSSION: Breathing 60% oxygen during flight results in a 3.8–4.9% reduction in lung volume associated with a small decrease in blood oxygenation and an estimated pulmonary shunt of up to 5.7%. EIT measures suggest persisting airway closure despite repeated FIVC maneuvers. There was no meaningful influence of cabin pressure altitude. The operational consequence of the observed changes is likely to be small.Tank H, Kennedy G, Pollock R, Hodkinson P, Sheppard-Hickey R-A, Woolford J, Green NDC, Stevenson A. Cabin pressure altitude effect on acceleration atelectasis after agile flight breathing 60% oxygen. Aerosp Med Hum Perform. 2023; 94(1):3–10.

Publisher

Aerospace Medical Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3