Human Physiological Limitations to Long-Term Spaceflight and Living in Space

Author:

H. Winkler Lawrence

Abstract

INTRODUCTION: Despite all our dreams and enthusiasm, the essential question of whether our species can ever live permanently in space remains unanswered. The 1975 NASA Ames Design Study on Space Settlements demonstrated how human physiology constrains and determines human habitat design in space. Our scientific understanding about the risks of and standards for microgravity (and rotation rate if centrifugally generated), ionizing radiation, and atmosphere pressure and composition, remains inadequate a half century later. In addition, there are newly recognized physiological challenges to living safely in space, including spaceflight-associated neuro-ocular syndrome (SANS), extravascular hemolytic anemia, and other factors that affect every human cell and organ system. A comprehensive review was conducted to establish what we have learned and what is still required to know about the pathophysiology of long-term space travel and living in space since my first report in 1978. The results determine not only how, but if we can realistically plan to inhabit the cosmos that surrounds us.Winkler LH. Human physiological limitations to long-term spaceflight and living in space. Aerosp Med Hum Perform. 2023; 94(6):444–456.

Publisher

Aerospace Medical Association

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3