Cerebral Hemodynamics During Exposure to Hypergravity (+Gz) or Microgravity (0 G)

Author:

Saehle Terje

Abstract

BACKGROUND: Optimal human performance and health is dependent on steady blood supply to the brain. Hypergravity (+Gz) may impair cerebral blood flow (CBF), and several investigators have also reported that microgravity (0 G) may influence cerebral hemodynamics. This has led to concerns for safe performance during acceleration maneuvers in aviation or the impact long-duration spaceflights may have on astronaut health.METHODS: A systematic PEO (Population, Exposure, Outcome) search was done in PubMed and Web of Science, addressing studies on how elevated +Gz forces or absence of such may impact cerebral hemodynamics. All primary research containing anatomical or physiological data on relevant intracranial parameters were included. Quality of the evidence was analyzed using the GRADE tool.RESULTS: The search revealed 92 eligible articles. It is evident that impaired CBF during +Gz acceleration remains an important challenge in aviation, but there are significant variations in individual tolerance. The reports on cerebral hemodynamics during weightlessness are inconsistent, but published data indicate that adaptation to sustained microgravity is also characterized by significant variations among individuals.DISCUSSION: Despite a high number of publications, the quality of evidence is limited due to observational study design, too few included subjects, and methodological challenges. Clinical consequences of high +Gz exposure are well described, but there are significant gaps in knowledge regarding the intracranial pathophysiology and individual hemodynamic tolerance to both hypergravity and microgravity environments.Saehle T. Cerebral hemodynamics during exposure to hypergravity (+Gz) or microgravity (0 G). Aerosp Med Hum Perform. 2022; 93(7):581–592.

Publisher

Aerospace Medical Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3