Simulated Aeromedical Evacuation in a Polytrauma Rat Model

Author:

Arnaud Françoise,Pappas Georgina,Maudlin-Jeronimo Eric,Goforth Carl

Abstract

BACKGROUND: Hemorrhage and traumatic brain injury can be lethal if left unattended. The transportation of severely wounded combat casualties from the battlefield to higher level of care via aeromedical evacuation (AE) may result in unintended complications. This could become a serious concern at the time of evacuation of mass casualties or for prolonged field care scenarios with limited resources.METHODS: Following instrumentation (t1), anesthetized Sprague-Dawley rats were injured or not [75-kPa blast and 30% estimated blood-volume controlled hemorrhage] (t2). After 15 min, all rats were resuscitated with saline. During the simulated 3-h evacuation, 8000 ft (2440 m) vs. sea-level heart rate, temperature, and oxygenation (Spo2) were continuously recorded. One group of rats was euthanized immediately after evacuation (t3) and another after a 72-h recovery period (t4). Hematology and metabolic levels were measured at t1, t2, t3, and t4.RESULTS: Survival was 100% in control-uninjured animals, 83% in injured animals under normobaria, and significantly reduced to 50% under hypobaria. This AE setting resulted in significantly lower hemodynamics, thermoregulation, and oxygenation parameters in the animals under hypobaria than those under normobaria. The initial lower mean arterial pressure (MAP) with the reduced oxygen level before AE were critical factors for the survival of injured animals. We observed a general increase of white blood cells and platelet ability to aggregate at t4 in all experimental groups.CONCLUSION: Physiological parameters were affected during aeromedical evacuation in all groups. This was worsened for injured animals with MAP less than 60 mmHg associated with low Spo2 in a simulated aeromedical evacuation. This represented a high risk of mortality for severely polytraumatized animals.Arnaud F, Pappas G, Maudlin-Jeronimo E, Goforth C. Simulated aeromedical evacuation in a polytrauma rat model. Aerosp Med Hum Perform. 2019; 90(12):1016–1025.

Publisher

Aerospace Medical Association

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3