Author:
Vimal Vivekanand Pandey,Zheng Han,Hong Pengyu,Fakharzadeh Lila N.,Lackner James R.,DiZio Paul
Abstract
INTRODUCTION: Being able to identify individual differences in skilled motor learning during disorienting conditions is important for spaceflight, military aviation, and rehabilitation.METHODS: Blindfolded subjects (N = 34) were strapped into a device that behaved
like an inverted pendulum in the horizontal roll plane and were instructed to use a joystick to stabilize themselves across two experimental sessions on consecutive days. Subjects could not use gravitational cues to determine their angular position and many soon became spatially disoriented.RESULTS:
Most demonstrated minimal learning, poor performance, and a characteristic pattern of positional drifting during horizontal roll plane balancing. To understand the wide range of individual differences observed, we used a Bayesian Gaussian Mixture method to cluster subjects into three statistically
distinct groups that represent Proficient, Somewhat Proficient, and Not Proficient performance. We found that subjects in the Not Proficient group exhibited a suboptimal strategy of using very stereotyped large magnitude joystick deflections. We also used a Gaussian Naive Bayes method to create
predictive classifiers. As early as the second block of experimentation (out of ten), we could predict a subject’s final group with 80% accuracy.DISCUSSION: Our findings indicate that machine learning can help predict individual performance and learning in a disorienting dynamic
stabilization task and identify suboptimal strategies in Not Proficient subjects, which could lead to personalized and more effective training programs.Vimal VP, Zheng H, Hong P, Fakharzadeh LN, Lackner JR, DiZio P. Characterizing individual differences in a dynamic stabilization
task using machine learning. Aerosp Med Hum Perform. 2020; 91(6):479–488.
Publisher
Aerospace Medical Association
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献