Metabolic Cost of a Proposed NMES Spaceflight Countermeasure Compared to Walking in Active Adults

Author:

Abitante Thomas J.,Alemi Mohammad Mehdi,Newman Dava J.,Duda Kevin R.

Abstract

INTRODUCTION: Astronauts exercise to reduce microgravity-induced bone loss, but the resultant skeletal loading may not be sufficient to reduce fracture risk on an extended Mars mission. Adding additional exercise increases the risk of a negative caloric balance. Neuromuscular electrical stimulation (NMES) induces involuntary muscle contractions, which load the skeleton. The metabolic cost of NMES is not fully understood. On Earth, walking is a common source of skeletal loading. If the metabolic cost of NMES were equal to or less than walking, it could offer a low metabolic cost option for increasing skeletal loading.METHODS:We measured the oxygen consumed and carbon dioxide produced from 10 subjects during 5-min bouts of walking at 2 mph, 3 mph, and 2 mph on a 6° incline, and of NMES to the legs at duty cycles of 1 s on and 5 s, 4 s, or 3 s off. Metabolic cost was calculated using the Brockway equation and the percent increase above resting for each NMES bout was compared to walking.RESULTS: Metabolic cost increased 64.9 ± 52.8% from rest in the most intense NMES duty cycle (1 s/3 s) and 120.4 ± 26.5%, 189.3 ± 59.5%, 281.7 ± 66.8%, for the 2 mph, 3 mph, and incline walking, respectively. The metabolic cost did not differ significantly between the three NMES duty cycles.DISCUSSION: The increase in metabolic cost of the fastest NMES bout was less than that of the slowest walk, indicating that numerous NMES bouts offer a way to increase skeletal loading at a modest metabolic cost. This might allow for more daily skeletal loading cycles, potentially further reducing bone loss.Abitante TJ, Alemi MM, Newman DJ, Duda KR. Metabolic cost of a proposed NMES spaceflight countermeasure compared to walking in active adults. Aerosp Med Hum Perform. 2023; 94(7):523–531.

Publisher

Aerospace Medical Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3