Impact of Exercise-Induced Strains and Nutrition on Bone Mineral Density in Spaceflight and on the Ground

Author:

Caruso John,Patel Neel,Wellwood Joseph,Bollinger Lance

Abstract

BACKGROUND: Bone mineral density (BMD) is a measure of skeletal health that may foretell disorders like osteoporosis. METHODS: To reduce bone losses on Earth, treatments include exercise, diet, and drugs. Each impact osteoblast and osteoclast activity dictates skeletal remodeling and subsequent BMD changes. BMD loss is a concern during spaceflight. For astronauts, low BMD undermines in-flight tasks and compromises their postflight health. RESULTS: While bisphosphonates exhibited promise as an in-flight bone loss treatment, study results are mixed, and this class of drugs has numerous side-effects. While the role antiresorptive agents play in reducing BMD loss is discussed, this review focuses on exercise-induced strains and nutrition, two in-flight treatments without bisphosphonates’ side-effects. DISCUSSION: Evidence supports in-flight exercise and a healthy diet with vitamin D and Ca+2 supplementation to limit BMD loss. This review suggests how exercise and nutrition may limit BMD loss during spaceflight. Also discussed is an in-flight version of the inertial exercise trainer (IET; Impulse Technologies, Knoxville TN). By imparting high bone-strain magnitudes, rates, and frequencies with less mass, footprint, and power needs than other forms of in-flight resistance exercise hardware, the IET warrants inquiry for use aboard future long-term spaceflights. Caruso J, Patel N, Wellwood J, Bollinger L. Impact of exercise-induced strains and nutrition on bone mineral density in spaceflight and on the ground. Aerosp Med Hum Perform. 2023; 94(12):923–933.

Publisher

Aerospace Medical Association

Reference95 articles.

1. Daily impact score in long-term acceleration measurements of exercise;Ahola R,2010

2. Efficacy of statins for osteoporosis: a systematic review and meta-analysis;An T,2017

3. Recommended dietary reference intakes, nutritional goals and dietary guidelines for fat and fatty acids: a systematic review;Aranceta J,2012

4. Antioxidant supplementation does not affect bone turnover during 60 days of 6° head-down tilt bed rest: results from an exploratory randomized controlled trial;Austermann K,2021

5. A human mission to Mars: predicting the bone mineral density loss of astronauts;Axpe E,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3