Additive Sensory Noise Effects on Operator Performance in a Lunar Landing Simulation

Author:

Sherman Sage O.,Shen Young-Young,Gutierrez-Mendoza Daniel,Schlittenhart Michael,Watson Cody,Clark Torin K.,Anderson Allison P.

Abstract

INTRODUCTION: Adding noise to a system to improve a weak signal’s detectability is known as stochastic resonance (SR). SR has been shown to improve sensory perception and cognitive performance in certain individuals, but it is unknown whether this performance improvement can translate to meaningful macrocognitive enhancements in performance for complex, operational tasks.OBJECTIVE: We investigated human operator performance in a lunar landing simulation while applying auditory white noise and/or noisy galvanic vestibular stimulation.METHODS: We measured performance (N = 16 subjects) while completing simulation trials in our Aerospace Research Simulator. Trials were completed with and without the influence of auditory white noise, noisy galvanic vestibular stimulation, and both simultaneously in a multimodal fashion. Performance was observed holistically and across subdimensions of the task, which included flight skill and perception. Subjective mental workload was collected after completing four trials in each treatment.RESULTS: We did not find broad operator improvement under the influence of noise, but a significant interaction was identified between subject and noise treatment, indicating that some subjects were impacted by additive noise. We also found significant interactions between subject and noise treatment in performance subdimensions of flight skill and perception. We found no significant main effects on mental workload.CONCLUSIONS: This study investigated the utility of using additive sensory noise to induce SR for complex tasks. While SR has been shown to improve aspects of performance, our results suggest additive noise does not yield operational performance changes for a broad population, but specific individuals may be affected.Sherman SO, Shen Y-Y, Gutierrez-Mendoza D, Schlittenhart M, Watson C, Clark TK, Anderson AP. Additive sensory noise effects on operator performance in a lunar landing simulation. Aerosp Med Hum Perform. 2023; 94(10):770–779.

Publisher

Aerospace Medical Association

Subject

General Medicine

Reference25 articles.

1. Transcranial direct current stimulation modulates neuronal activity and learning in pilot training;Front Hum Neurosci,2016

2. Exhibition of stochastic resonance in vestibular tilt motion perception;Brain Stimul,2018

3. Different effects of adding white noise on cognitive performance of sub-, normal and super-attentive school children;PLoS One,2014

4. Functional stochastic resonance in the human brain: noise induced sensitization of baroreflex system;Phys Rev Lett,2000

5. Estimation of subjectively reported trust, mental workload, and situation awareness using unobtrusive measures;Hum Factors,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3