G-Induced Loss of Consciousness Prediction Using a Support Vector Machine

Author:

Ohrui Nobuhiro,Iino Yuji,Kuramoto Koichiro,Kikukawa Azusa,Okano Koji,Takada Kunio,Tsujimoto Tetsuya

Abstract

INTRODUCTION: Gravity-induced loss of consciousness (G-LOC) is a major threat to fighter pilots and may result in fatal accidents. The brain has a period of 5–6 s from the onset of high +Gz exposure, called the functional buffer period, during which transient ischemia is tolerated without loss of consciousness. We tried to establish a method for predicting G-LOC within the functional buffer period by using machine learning. We used a support vector machine (SVM), which is a popular classification algorithm in machine learning.METHODS: The subjects were 124 flight course students. We used a linear soft-margin SVM, a nonlinear SVM Gaussian kernel function (GSVM), and a polynomial kernel function, for each of which 10 classifiers were built every 0.5 s from the onset of high +Gz exposure (Classifiers 0.5–5.0) to predict G-LOC. Explanatory variables used for each SVM were age, height, weight, with/without anti-G suit, +Gz level, cerebral oxyhemoglobin concentration, and deoxyhemoglobin concentration.RESULTS: The performance of GSVM was better than that of other SVMs. The accuracy of each classifier of GSVM was as follows: Classifier 0.5, 58.1%; 1.0, 54.8%; 1.5, 57.3%; 2.0, 58.1%; 2.5, 64.5%; 3.0, 63.7%; 3.5, 65.3%; 4.0, 64.5%; 4.5, 64.5%; and 5.0, 64.5%.CONCLUSION: We could predict G-LOC with an accuracy rate of approximately 65% from 2.5 s after the onset of high +Gz exposure by using GSVM. Analysis of a larger number of cases and factors to enhance accuracy may be needed to apply those classifiers in centrifuge training and actual flight.Ohrui N, Iino Y, Kuramoto K, Kikukawa A, Okano K, Takada K, Tsujimoto T. G-induced loss of consciousness prediction using a support vector machine. Aerosp Med Hum Perform. 2024; 95(1):29–36.

Publisher

Aerospace Medical Association

Subject

General Medicine

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3