Author:
Kizawa Momoko,Yasuda Toshito,Shima Hiroaki,Mori Katsunori,Tsujinaka Seiya,Neo Masashi
Abstract
OBJECTIVES: Some forefoot shapes are ideal for pointe work in ballet. Egyptian-type, with the hallux being longest and the remaining toes decreasing in size, and Greek-type, with the second toe longer than the hallux, are considered less optimal for pointe work. Square-type, with the
second toe the same length as the hallux, is considered optimal. This study compared postural stability in the bipedal stance, demi pointe, and en pointe between ballet dancers with the two toe types using a stabilometer. METHODS: This study included 25 Japanese ballet academy dancers who
had received ballet lessons for at least 6 years. Toes were categorized into Egyptian-type (n=14) and square-type (n=11). Bipedal stance, demi pointe, and en pointe were tested. Center of pressure (COP) parameters were calculated from ground-reaction forces using two force plates: total trajectory
length (LNG), velocities of anterior-posterior (VAP) and medial-lateral directions (VML), and maximum range displacement in the anterior-posterior (MAXAP) and medial-lateral directions (MAXML). Mann-Whitney U-tests were used to examine differences in COP parameters. RESULTS: There were no
differences in parameters during bipedal stance or demi pointe. However, dancers with Egyptian-type toes had significantly greater LNG (p<0.01), VML (p=0.01), MAXML (p<0.01), and MAXAP (p=0.03) during en pointe. CONCLUSIONS: Ballet dancers with Egyptian-type toes demonstrated greater
displacement in the medial-lateral and anterior-posterior directions during en pointe. Ballet dancers should be aware of toe types and sway character to optimize ballet training and balance.
Publisher
Science and Medicine, Inc.
Subject
History and Philosophy of Science,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献