Perbandingan Algoritma Naive Bayes dan Decision Tree(C4.5) dalam Klasifikasi Dosen Berprestasi

Author:

Supriyadi Andy

Abstract

Abstract – Enhancing the execution of Tri Dharma for lecturers is one of the factors in obtaining and sustaining the level of universities with good institution achievement. The Rectorate should exercise consideration while making a decision to reward lecturers who do very well. The information was gathered through speaking with members of the rectorate staff to classify lectures at Sebelas Maret University. In this study, accuracy results in the classification based on lecturers' accomplishments will be compared. International and national publications, education level, the length of doctoral studies, becoming an associate professor, and the length of certification as a lecturer are the features considered in the classification. To categorize lecturers according to their accomplishment, the algorithms Naive Bayes and Support Vector Machine were applied. 350 records of training data and 130 records of testing data total 500 records in this study. From 2018 to 2021, the study was carried out at Sebelas Maret University. The accuracy value obtained from 10-fold cross validation the testing using the Naive Bayes method is 94,80%, while the accuracy value obtained from the testing using the Decision Tree is 95,80%.

Publisher

Universitas Nusantara PGRI Kediri

Subject

General Agricultural and Biological Sciences

Reference12 articles.

1. Pemerintah RI, “Undang-undang Republik Indonesia Nomor 14 Tahun 2005 tentang Guru dan Dosen,” Prod. Huk., 2005.

2. K. Riset, P. Tinggi, D. Jenderal, S. Daya, and P. Tiggi, Direktorat Sumber Daya, Direktorat Jenderal Pendidikan Tinggi. 2019. [Online]. Available: https://repositori.kemdikbud.go.id/23050/1/dosen-berprestasi-2019.pdf

3. A. Muslim,M.,A.,Prasetiyo, Budi., M, E. L.H., H, A.J., Mirqotussa’adah., R, S.H., Nurzahputra, “Data Mining Algoritma C4.5,” 2019, Accessed: Feb. 09, 2023. [Online]. Available: http://lib.unnes.ac.id/33080/6/Buku_Data_Mining.PDF

4. A. P. Wibowo and S. Hartati, “Sistem Klasifikasi Kinerja Satpam Menggunakan Metode Naїve Bayes Classifier,” INOVTEK Polbeng - Seri Inform., vol. 1, no. 2, 2016, doi: 10.35314/isi.v1i2.138.

5. A. Rohani, M. Taki, and M. Abdollahpour, “A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I),” Renew. Energy, vol. 115, 2018, doi: 10.1016/j.renene.2017.08.061.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3