Author:
Sunardi Sunardi,Fadlil Abdul,Kusuma Nur Makkie Perdana
Abstract
Classification is one of the most often employed data mining techniques. It focuses on developing a classification model or function, also known as a classifier, and predicting the class of objects whose class label is unknown. Categorizing applications include pattern recognition, medical diagnosis, identifying weaknesses in organizational systems, and classifying changes in the financial markets. The objectives of this study are to develop a profile of a victim of online fraud and to contrast the approaches frequently used in data mining for classification based on Accuracy, Classification Error, Precision, and Recall. The survey was conducted using Google Forms, which is an online platform. Naive Bayes, Decision Tree, and Random Forest algorithms are popular models for classification in data mining. Based on the sociodemographics of Indonesia's online crime victims, these models are used to classify and predict. The result shows that Naïve Bayes and Decision Tree are slightly superior to the Random Forest Model. Naive Bayes and Decision Tree have an accuracy value of 77.3%, while Random Forest values 76.8%.
Publisher
Universitas Nusantara PGRI Kediri
Reference44 articles.
1. A. A. Gillespie and S. Magor, “Tackling online fraud,” ERA Forum, vol. 20, no. 3, pp. 439–454, 2020, doi: 10.1007/s12027-019-00580-y.
2. N. P. Singh, “Online Frauds in Banks with Phishing,” J. Internet Bank. Commer., vol. 12, no. 2, pp. 1–28, 2007, [Online]. Available: http://eprints.utm.my/8136/.
3. Sunardi, A. Fadlil, and N. M. P. Kusuma, “Implementasi Data Mining dengan Algoritma Naïve Bayes untuk Profiling Korban Penipuan Online di Indonesia,” vol. 6, pp. 1562–1572, 2022, doi: 10.30865/mib.v6i3.3999.
4. A. M. Marshal, Digital Forensics Digital Evidence in Criminal Investigations, 1st ed. Wiley-Blackwell, 2009.
5. E. R. Leukfeldt, “Phishing for suitable targets in the Netherlands: Routine activity theory and phishing victimization,” Cyberpsychology, Behav. Soc. Netw., vol. 17, no. 8, pp. 551–555, 2014, doi: 10.1089/cyber.2014.0008.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献