GCN-MF: A graph convolutional network based on matrix factorization for recommendation

Author:

Junxi Yang,Wang Zongshui,Chen Chong

Abstract

With the increasing development of information technology and the rise of big data, the Internet has entered the era of information overload. While users enjoy the convenience brought by big data to their daily lives, they also face more and more information filtering and selection problems. In this context, recommendation systems have emerged, and existing recommendation systems cannot effectively deal with the problem of data sparsity. Therefore, this paper proposes a graph convolutional network based on matrix factorization for recommendation. The embedding layer uses matrix factorization instead of neighborhood aggregation, and the interaction layer uses multi-layer neural networks instead of simple inner products. Finally, on the Movielens-1M, Yelp and Gowalla public data set, NDCG and Recall are better than the existing baseline model, which effectively alleviates the data sparsity problem.

Publisher

Berger Scientific Press Limited

Reference30 articles.

1. Hanafi, M., Suryana, N., Bin, S., et al. Paper survey and example of collaborative filtering implementation in recommender system. Journal of Theoretical and Applied Information Technology, 2017, 3195(16), 4001-4014.

2. Ye, X., Yuan, P., Guo, X., et al. Collaborative filtering recommendation algorithm based on user interest and project cycle. Journal of Nanjing University of Science and Technology, 2018, 42(4), 392-400. https://doi.org/10.14177/j.cnki.32-1397n.2018.42.04.002

3. Sarwar, B., Karypis, G., Konstan, J., et al. Analysis of recommendation algorithms for e-commerce. In proceedings of the 2nd ACM Conference on Electronic Commerce, 2000: 158-167. https://doi.org/10.1145/352871.352887

4. Sedhain, S., Menon, A. K., Sanner, S., Xie, L. AutoRec: Autoencoders Meet Collaborative Filtering. In proceedings of the 24th International Conference on World Wide Web, 2015, 111-112. https://doi.org/10.1145/2740908.2742726

5. Ying, S., Hoens, T. R., Jian, J., et al. Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features. In proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, 255-62. https://doi.org/10.1145/2939672.2939704

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3