Application of Multimodal Image Fusion Technology in Brain Tumor Surgical Procedure

Author:

Li Jiefei1,Zhang Yuqi1,He Le2,Zuo Huancong1

Affiliation:

1. Department of Neurosurgery, Medical Center, Tsinghua University, Yuquan Hospital, Beijing 100084, China

2. Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China

Abstract

Objective To construct brain tumors and their surrounding anatomical structures through the method of registration, fusion and, three-dimensional (3D) reconstruction based on multimodal image data and to provide the visual information of tumor, skull, brain, and vessels for preoperative evaluation, surgical planning, and function protection. Methods The image data of computed tomography (CT) and magnetic resonance imaging (MRI) were collected from fifteen patients with confirmed brain tumors. We reconstructed brain tumors and their surrounding anatomical structures using NeuroTech software. Results The whole 3D structures including tumor, brain surface, skull, and vessels were successfully reconstructed based on the CT and MRI images. Reconstruction image clearly shows the tumor size, location, shape, and the anatomical relationship of tumor and surrounding structures. We can hide any reconstructed images such as skull, brain tissue, blood vessles, or tumors. We also can adjust the color of reconstructed images and rotate images to observe the structures from any direction. Reconstruction of brain and skull can be semi transparent to display the deep structure; reconstruction of the structures can be axial, coronal, and sagittal cutting to show relationship among tumor and surrounding structures. The reconstructed 3D structures clearly depicted the tumor features, such as size, location, and shape, and provided visual information of the spatial relationship among its surrounding structures. Conclusions The method of registration, fusion, and 3D reconstruction based on multimodal images to provide the visual information is feasible and practical. The reconstructed 3D structures are useful for preoperative assessment, incision design, the choice of surgical approach, tumor resection, and functional protection.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3