Prediction of noise emission in the machining of wood materials by means of an artificial neural network

Author:

Özşahin Şükrü,Singer Hilal

Abstract

Background: Noise produced during machining of wood materials can be a source of harm to workers and an environmental hazard. Understanding the factors that contribute to this noise will aid the development of mitigation strategies. In this study, an artificial neural network (ANN) model was developed to model the effects of wood species, cutting width, number of blades, and cutting depth on noise emission in the machining process. Methods: A custom application created with MATLAB codes was used for the development of the multilayer feed-forward ANN model. Model performance was evaluated by numerical indicators such as MAPE, RMSE, and R2. Results: The ANN model performed well with acceptable deviations. The MAPE, RMSE, and R2 values were 0.553%, 0.600, and 0.9824, respectively, in the testing phase. Furthermore, this study predicted the intermediate values not provided from the experimental study. The model predicted that lower noise emissions would occur with decreased cutting width and cutting depth. Conclusions: ANNs are quite effective in predicting the noise emission. Practitioners relying on the ANN approach for investigating the effects of various factors on noise emission can save time and costs by reducing the number of experimental combinations studied to generate predictive models.

Publisher

Scion

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3