Parathyroid hormone-related protein (PTHrP) mRNA splicing and parathyroid hormone/PTHrP receptor mRNA expression in human placenta and fetal membranes

Author:

Curtis NE,Thomas RJ,Gillespie MT,King RG,Rice GE,Wlodek ME

Abstract

During human pregnancy, parathyroid hormone-related protein (PTHrP) and parathyroid hormone (PTH)/PTHrP receptor are produced by the uterus, placenta, fetal membranes (amnion and chorion) and developing fetus. PTHrP alternative 3' mRNA splicing results in transcripts which encode three PTHrP isoforms and have been identified in amnion. Uteroplacental PTHrP expression is greatest in amnion and increases dramatically during late pregnancy. The aims of this study were to determine PTH/PTHrP receptor mRNA expression at preterm and term gestations and to determine 3' alternative splicing patterns in placenta, amnion and choriodecidua at preterm and term gestations. Using semiquantitative reverse transcription-polymerase chain reaction, PTHrP and PTH/PTHrP receptor transcripts were identified in preterm (n=5) and term (n=7) gestational tissues. PTH/PTHrP receptor mRNA expression did not differ between tissue types or change with advancing gestation. In contrast, PTHrP expression in the same tissues increased with advancing gestation and was significantly greater in amnion than in placenta and choriodecidua. Thus PTHrP, although produced predominantly in amnion, may act in amnion and other tissues including placenta, choriodecidua and myometrium. In amnion over placenta, transcripts encoding PTHrP 1-139 and 1-173 were detected in some preterm and all term samples and those encoding PTHrP 1-141 were detected in all samples. Similar results were obtained for reflected amnion. In placenta and choriodecidua, PTHrP 1-139 and 1-173 transcripts were undetectable or of low abundance. PTHrP 1-141 transcripts were detected in some placenta and choriodecidua samples. In summary, transcripts encoding PTHrP 1-141 appeared to be more abundantly expressed than those encoding PTHrP 1-139 or 1-173. However, the up-regulation of PTHrP expression in amnion at term may involve each of the alternative 3' mRNA splicing pathways since transcripts for each isoform appeared to be more consistently expressed at term.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3