Biochemical origins of the non-monotonic receptor-mediated dose-response

Author:

Kohn MC,Melnick RL

Abstract

A mathematical model was created to examine how xenobiotic ligands that bind to nuclear receptor proteins may affect transcriptional activation of hormone-regulated genes. The model included binding of the natural ligand (e.g. hormone) and xenobiotic ligands to the receptor, binding of the liganded receptor to receptor-specific DNA response sequences, binding of co-activator or co-repressor proteins (Rp) to the resulting complex, and the consequent transcriptional rate relative to that in the absence of the xenobiotic agent. The model predicted that the xenobiotic could act as a pure agonist, a pure antagonist, or a mixed agonist whose dose-response curve exhibits a local maximum. The response to the agent depends on the affinity of the liganded receptor-DNA complex for binding additional transcription factors (e.g. co-activator proteins). An inverted U-shaped dose-response occurred when basal levels of the natural ligand did not saturate receptor binding sites and the affinity for co-activator is weaker when the xenobiotic ligand is bound to the receptor than when the endogenous ligand is bound. The dose-response curve shape was not dependent on the affinity of the receptor for the xenobiotic agent; alteration of this value merely shifted the curve along the concentration axis. The amount of receptor, the density of DNA response sequences, and the affinity of the DNA-bound receptor for Rp determine the amplitude of the computed response with little overall change in curve shape. This model indicates that a non-monotonic dose-response is a plausible outcome for xenobiotic agents that activate nuclear receptors in the same manner as natural ligands.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3