The juxtamembrane but not the carboxyl-terminal domain of the insulin receptor mediates insulin's metabolic functions in primary adipocytes and cultured hepatoma cells

Author:

Paz K,Boura-Halfon S,Wyatt LS,LeRoith D,Zick Y

Abstract

Insulin-stimulated signaling pathways are activated upon interactions between the intracellular domains of the receptor and its downstream effectors. Insulin receptor substrate proteins (IRS-1, -2, -3 and -4) are the best-studied substrates for the insulin receptor kinase (IRK). We have previously shown that IRS-1 and IRS-2 interact with the juxtamembrane (JM) but not with the carboxyl-terminal (CT) region of the insulin receptor (IR) in vitro. However, the precise role of these IR regions in mediating insulin's bioeffects is still unresolved. In the present work we made use of vaccinia virus as a vector for quantitative expression of the JM and CT domains within the cytoplasm of physiologically insulin-responsive primary rat adipocytes and rat hepatoma Fao cells. We could demonstrate that overexpression of either the JM or the CT domains did not inhibit either insulin binding or insulin-stimulated receptor autophosphorylation. In contrast, metabolic effects such as insulin-induced glucose utilization in adipocytes, and insulin-induced amino acid utilization in Fao hepatoma cells were inhibited (70-80%) in cells overexpressing the JM but not the CT domains of IR. The inhibitory effects of the overexpressed JM domain were accompanied by inhibition of insulin-stimulated IRS-1 phosphorylation, decreased IRS-1-associated PI3K activity, and decreased phosphorylation of the downstream effectors of PI3K, PKB and p70 S6K. Insulin-stimulated thymidine incorporation in Fao cells was also inhibited (40%) upon overexpression of the JM but not the CT region of IR. Our findings suggest that interactions between the JM region of IR and its downstream effectors are obligatory for insulin-stimulated metabolic functions in physiologically relevant insulin responsive cells. They also rule out the possibility that interaction of proteins, including PI3K, with the CT domain can provide an alternative pathway.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3