Regulation of cell cycle and cyclins by 16alpha-hydroxyestrone in MCF-7 breast cancer cells

Author:

Lewis JS,Thomas TJ,Klinge CM,Gallo MA,Thomas T

Abstract

It has been suggested that alterations in estradiol (E(2)) metabolism, resulting in increased production of 16alpha-hydroxyestrone (16alpha-OHE(1)), is associated with an increased risk of breast cancer. In the present study, we examined the effects of 16alpha-OHE(1)on DNA synthesis, cell cycle progression, and the expression of cell cycle regulatory genes in MCF-7 breast cancer cells. G(1) synchronized cells were treated with 1 to 25 nM 16alpha-OHE(1) for 24 and 48 h. [(3)H]Thymidine incorporation assay showed that 16alpha-OHE(1) caused an 8-fold increase in DNA synthesis compared with that of control cells, whereas E(2) caused a 4-fold increase. Flow cytometric analysis of cell cycle progression also demonstrated the potency of 16alpha-OHE(1) in stimulating cell growth. When G(1) synchronized cells were treated with 10 nM 16alpha-OHE(1) for 24 h, 62+/-3% of cells were in S phase compared with 14+/-3% and 52+/-2% of cells in the control and E(2)-treated groups respectively. In order to explore the role of 16alpha-OHE(1) in cell cycle regulation, we examined its effects on cyclins (D1, E, A, B1), cyclin dependent kinases (Cdk4, Cdk2), and retinoblastoma protein (pRB) using Western and Northern blot analysis. Treatment of cells with 10 nM 16alpha-OHE(1) resulted in 4- and 3-fold increases in cyclin D1 and cyclin A, respectively, at the protein level. There was also a significant increase in pRB phosphorylation and Cdk2 activation. In addition, transient transfection assay using an estrogen response element-driven luciferase reporter vector showed a 15-fold increase in estrogen receptor-mediated transactivation compared with control. These results show that 16alpha-OHE(1) is a potent estrogen capable of accelerating cell cycle kinetics and stimulating the expression of cell cycle regulatory proteins.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3