Homocysteine thiolactone inhibits insulin signaling, and glutathione has a protective effect

Author:

Najib S,Sanchez-Margalet V

Abstract

Hyperhomocysteinemia and insulin resistance are independent factors for cardiovascular disease. Most of the angiotoxic effects of homocysteine are related to the formation of homocysteine thiolactone and the consequent increase in oxidative stress. The oxidative stress has also been shown to impair insulin action, therefore leading to insulin resistance. In order to study a putative direct effect of homocysteine on insulin signaling, we have characterized the molecular counter-regulation of the early events in the signal transduction of the insulin receptor, and the metabolic end-point of glycogen synthesis. We employed HTC rat hepatoma cells transfected with the human insulin receptor. A 10 min exposure to homocysteine thiolactone (50 microM) resulted in a significant inhibition of insulin-stimulated tyrosine phosphorylation of the insulin receptor beta-subunit and its substrates IRS-1 and p60-70, as well as their association with the p85 regulatory subunit of phosphatidylinositol 3-kinase. These effects led to impairment of the insulin-stimulated phosphatidylinositol 3-kinase activity, which plays a central role in regulating insulin action. Thus, insulin-stimulated glycogen synthesis was also inhibited by homocysteine thiolactone. To investigate whether oxidative stress was mediating the counter-regulatory effect of homocysteine thiolactone on insulin signaling, we preincubated the cells (5 min) with 250 microM glutathione prior to the incubation with homocysteine (10 min) and subsequent insulin challenge. Glutathione completely abolished the effects of homocysteine thiolactone on insulin-receptor signaling and restored the insulin-stimulated glycogen synthesis. In conclusion, these data suggest that homocysteine thiolactone impairs insulin signaling by a mechanism involving oxidative stress, leading to a defect in insulin action.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3