Molecular characterisation and hormone-dependent expression of the porcine whey acidic protein gene

Author:

Simpson KJ,Bird P,Shaw D,Nicholas K

Abstract

A 17.5 kDa protein was isolated from porcine whey by reverse phase HPLC and identified as a putative whey acidic protein (WAP) homologue by sequencing 35 and 40 amino acid residues of the amino- and carboxy-terminus respectively. Degenerate oligonucleotides to both of these amino acid sequences were designed and used in reverse transcriptase PCR with RNA from lactating porcine mammary gland as a template. A 162 bp PCR fragment was detected and sequenced. Compilation of the deduced and determined amino acid sequence revealed a protein of 111 amino acids, which had approximately 75, 50, 40 and 35% similarity at amino acid level to camel, rabbit, rat and mouse WAP respectively. It also included the four-disulphide core characteristic of all WAP proteins and most Kunitz-type protease inhibitors. This provides the first unequivocal evidence for WAP secretion in the pig. SDS PAGE analysis of the whey fraction showed that WAP is secreted as a major protein in sow's milk from farrowing to weaning. The molecular mass of WAP in SDS PAGE was significantly greater than the 11.7 kDa determined from amino acid sequence, indicating that porcine WAP is possibly glycosylated. Northern analysis detected a single mRNA transcript of approximately 600 bp in porcine RNA from the mammary gland of lactating sows. To examine the hormone-regulated expression of the WAP gene the mammary glands of sows at day 90 of pregnancy were biopsied and explants cultured for 3 days in the presence of various combinations of porcine insulin (I), cortisol (F) and porcine prolactin (P). Northern analysis of RNA extracted from the tissue indicated that WAP gene expression was barely detectable in the mammary gland prior to culture and there was no increment in explants cultured in the presence of I and F. However, a significant increase in the accumulation of WAP mRNA was observed in explants cultured in I, F and P. A similar result was observed for beta-casein and alpha-lactalbumin gene expression.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3