Characterisation of the prereceptor regulation of glucocorticoids in the anterior segment of the rabbit eye

Author:

Onyimba Claire U,Vijapurapu Neelima,Curnow S John,Khosla Pamela,Stewart Paul M,Murray Philip I,Walker Elizabeth A,Rauz Saaeha

Abstract

The prereceptor regulation of glucocorticoids (GCs) by 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1), a bidirectional isozyme that interconverts active (cortisol) and inactive (cortisone) GCs, is an established determinant of GC function in tissues such as liver, adipose and bone. Although the therapeutic use of GCs is abundant in ophthalmic practice, where GC interactions with nuclear receptors modulate gene transcription, the prereceptor regulation of endogenous cortisol is not well described in ocular tissues. Recent descriptive studies have localised 11β-HSD1 to the human corneal epithelium and non-pigmented epithelium (NPE) of the ciliary body, indicating a link to corneal epithelial physiology and aqueous humour production. In this study, we characterise the functional aspects of the autocrine regulation of GCs in the anterior segment of the rabbit eye. Using our in-house generated primary antibody to human 11β-HSD1, immunohistochemical analyses were performed on paraffin-embedded sections of whole New Zealand white albino rabbits, (NZWAR) eyes. As in human studies, 11β-HSD1 was localised to the corneal epithelium and the NPE. No staining was seen in the albino ‘pigmented’ ciliary epithelium. Specific enzyme assays for oxo-reductase (cortisone→cortisol) and dehydrogenase (cortisol→cortisone) activity indicated predominant 11β-HSD1 oxo-reductase activity from both the intact ciliary body tissue (n=12, median 2.1 pmol/mg per h and range 1.25–2.8 pmol/mg per h; P=0.006) and primary cultures of corneal epithelial cells (n=12, median 3.0 pmol/mg per h and range 1.0–7.4 pmol/mg per h, P=0.008) compared with dehydrogenase activity (median 1.0 pmol/mg per h and range 0.5–2.0 pmol/mg per h; median 0.5 pmol/mg per h and range 0.25–1.9 pmol/mg per h respectively). These findings were supported by expression of 11β-HSD1 protein as visualised by Western blotting of ciliary body tissue and immunocytochemistry of corneal epithelial cells. Reduction of corneal epithelial cell proliferation was seen after primary cultures were co-incubated with cortisol and cortisone. 11β-HSD1 activity was not demonstrated in naïve conjunctival fibroblasts or corneal stromal keratocytes. Our results indicate that the distribution of 11β-HSD1 in the rabbit resembles that of the human eye and activates cortisone to cortisol in both corneal and uveal tissues. The NZWAR provides a suitable in vivo model for the further evaluation of 11β-HSD1 activity in the eye, especially its role in corneal epithelial and ciliary body physiology.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3