The influence of sex steroid hormones on ferrochelatase gene expression in Harderian gland of hamster (Mesocricetus auratus)

Author:

Vilchis F,Ramos L,Timossi C,Chávez B

Abstract

Ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), the terminal enzyme of the haem biosynthetic pathway, catalyses the insertion of ferrous iron into protoporphyrin IX to form protohaem. The Syrian hamster Harderian gland (HG) is known for its ability to produce and accumulate large amounts of protoporphyrins. In this species, the female gland contains up to 120 times more porphyrin than the male gland. Data from biochemical studies suggest that this gland possesses the enzymatic complex for haem biosynthesis but lacks ferrochelatase activity. The abundance of intraglandular haem proteins does not support this idea. To gain more insight into this process, we isolated cDNA for ferrochelatase from hamster liver, using the 5′- and 3′- rapid amplification of complementary DNA ends (RACE), and investigated its expression in HG from males and females. The full-length cDNA comprises an open reading frame of 1269 bp encoding a polypeptide of 422 amino-acid residues. Hamster DNA sequence exhibits 92% identity to mouse and 87% identity to human sequences. The predicted hamster enzyme was shown to have structural features of mammalian ferrochelatase, including a putative NH2- terminal presequence, a central core of about 330 amino-acid residues and an extra 30–50-amino-acid stretch at the carboxyl-terminus. RNA blotting experiments indicated that this cDNA hybridized to a liver mRNA of about 2.1 kb, while a weak hybridization signal was observed with mRNA from HG preparations. RT–PCR assays confirmed the expression of specific transcripts in both tissues. Male glands contained approximately twofold more enzyme mRNA than female glands. Likewise, the intraglandular content of mRNA varied during the oestrous cycle, with the highest levels found in the oestrous phase. These cyclic variations were less evident in liver. Ovariectomy plus treatment with progesterone or 17β-oestradiol plus progesterone increased ferrochelatase mRNA of the gland. In HG of short- or long-term castrated males, the administration of testosterone did not affect the ferrochelatase mRNA concentration. Based on mRNA expression levels, we conclude that Harderian ferrochelatase may play an active role in maintaining the physiological pool of haem required for processing cytochromes and other glandular haem proteins. Likewise, the sex-steroid hormones appear to have only a modest influence upon Harderian ferrochelatase.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3