Aging-related sex-dependent loss of the circulating leptin 24-h rhythm in the rhesus monkey

Author:

Downs Jodi L,Urbanski Henryk F

Abstract

The adipocyte-derived hormone leptin plays a pivotal role in the regulation of body weight and energy homeostasis. Many studies have indicated that the circulating levels of leptin show a 24-h rhythm, but the exact cause and nature of this rhythm is still unclear. In the present study, we remotely collected blood samples every hour from young and old, male and female rhesus monkeys, and examined their 24-h plasma leptin profiles. In both the young males (10–11 years) and females (7–13 years), a clear 24-h plasma leptin rhythm was evident with a peak occurring ~4 h into the night and a nadir occurring ~1 h into the day (lights on from 0700 to 1900 h). A 24-h plasma leptin rhythm was also observed in the old males (23–30 years), even when they were maintained under constant lighting conditions (continuous dim illumination of ~100 lx). In marked contrast, plasma leptin concentrations were relatively constant across the day and night in old peri- and post-menopausal females (17–24 years), regardless of the lighting schedule. These data establish that rhesus monkeys, like humans, show a daily nocturnal rise in plasma leptin, and the magnitude of this rhythm undergoes a sex-specific aging-dependent attenuation. Furthermore, they suggest that the underlying endocrine mechanism may be driven in part by a circadian clock mechanism.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3