Effects of 8-prenylnaringenin on the hypothalamo-pituitary-uterine axis in rats after 3-month treatment

Author:

Christoffel J,Rimoldi G,Wuttke W

Abstract

Phytoestrogens are increasingly consumed in artificially high doses as herbal preparations and nutritional supplements. The flavanone 8-prenylnaringenin (8PN) is a potent phytoestrogen, but its benefits and risks after long-term application are poorly identified. Therefore, we tested two doses of 8PN and 17β-estradiol-3-benzoate (E2B) (effective doses: 6.8 and 68.4 mg/kg body weight (BW) of 8PN, and 0.17 and 0.7 mg/kg BW of 17β-estradiol (E2)) and compared their effects on uterine weight, pituitary hormones (LH, FSH and prolactin) and the expression of estrogen-regulated genes and of estrogen receptor (ER)α and ERβ in the hypothalamus, pituitary and uterus. Both doses of E2 and the high dose of 8PN suppressed serum LH and FSH, and stimulated serum prolactin levels, uterine weight, and progesterone receptor, insulin-like growth factor I and complement protein C3 mRNA transcripts. In the preoptic and the mediobasal areas of the hypothalamus, all treatments had negligible effects on ERα and ERβ and gonadotropin-releasing hormone (GnRH) receptor gene expression, while ERβ and GnRH receptor transcripts in the anterior pituitary were reduced under both E2 doses and the high 8PN dose. The mRNA concentrations of the LHα and -β subunits in the pituitary were suppressed by E2 and 8PN. In summary, 8PN had very similar though milder effects than E2 on all tested parameters. Inhibition of climacteric complaints by E2 takes place in the hypothalamus, where it inhibits the overactive GnRH pulse generator. Hence, 8PN may be used to inhibit climacteric symptoms effectively. Human pharmacologic studies will show whether the stimulatory effect on the uterus that was found in the present animal model would require the concomitant administration of progestins to prevent endometrial overstimulation.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3