Enhancement of muscle glucose uptake by the vasopeptidase inhibitor, omapatrilat, is independent of insulin signaling and the AMP kinase pathway

Author:

Wong Victor,Szeto Linda,Uffelman Kristine,Fantus I George,Lewis Gary F

Abstract

Omapatrilat (OMA), a vasopeptidase inhibitor (VPI), presently being tested in clinical trials for its antihypertensive properties, inhibits both angiotensin-converting enzyme and neutral endopeptidase, and raises tissue bradykinin levels. Recent studies from our laboratory and those of others have demonstrated that VPIs enhance muscle glucose uptake in animal models, and this effect is mediated by the bradykinin–nitric oxide pathway. The mechanism of the effect of OMA on muscle glucose uptake, however, is presently unknown. To investigate the effect of OMA on insulin signaling, soleus muscle was isolated 2 or 5 min after an i.v. bolus of insulin or saline from male Zucker fatty rats (8–10 weeks of age), following a 5-day treatment period of oral OMA (15 mg/kg per day) or drug vehicle (placebo). OMA resulted in significantly lower systolic blood pressure compared with the placebo-treated group (84.4± 7.52 mmHg in OMA vs 112±2.18 mmHg in controls, P<0.01). Immunoprecipitation and Western blot analysis of insulin receptor substrate 1 (IRS-1) revealed no changes in protein mass with OMA treatment. OMA did not enhance basal or insulin-stimulated IRS-1 tyrosine phosphorylation or its subsequent association with the p85 regulatory subunit of phosphatidylinositol 3-kinase. Under basal and insulin-stimulated conditions, OMA treatment did not alter the protein mass or the phosphorylation of Akt/protein kinase B, p42/44 extracellular signal-regulated kinase or adenosine monophosphate-activated protein kinase, or GLUT4 protein expression. We conclude that the ability of OMA to enhance whole body and specifically muscle glucose uptake in Zucker fatty rats is not mediated by enhancing insulin or AMPK signaling. Future studies should examine whether hemodynamic effects of the drug, independent of insulin signaling, enhance glucose uptake in insulin-resistant skeletal muscle.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3