Author:
Ulianich Luca,Elia Maria Giovanna,Treglia Antonella Sonia,Muscella Antonella,Di Jeso Bruno,Storelli Carlo,Marsigliante Santo
Abstract
In PC Cl3 cells, a continuous, fully differentiated rat thyroid cell line, P2Y2 purinoceptor activation provoked a transient increase of [Ca2+]i, followed by a decreasing sustained phase. The α and β1 protein kinase C (PKC) inhibitor Gö6976 decreased the rate of decrement to the basal [Ca2+]i level and increased the peak of Ca2+ entry of the P2Y2-provoked Ca2+transients. These effects of Gö 6976 were not caused by an increased permeability of the plasma membrane, since the Mn2+ and Ba2+ uptake were not changed by Gö 6976. Similarly, the Na+/Ca2+ exchanger was not implicated, since the rate of decrement to the basal [Ca2+]i level was equally decreased in physiological and Na+-free buffers, in the presence of Gö 6976. On the contrary, the activity of the sarcoplasmic–endoplasmic reticulum Ca2+ATPase (SERCA) 2b was profoundly affected by Gö 6976 since the drug was able to completely inhibit the stimulation of the SERCA 2b activity elicited by P2-purinergic agonists. Finally, the PKC activator phorbol myristate acetate had effects opposite to Gö 6976, in that it markedly increased the rate of decrement to the basal [Ca2+]i level after P2Y2 stimulation and also increased the activity of SERCA 2b. These results suggest that SERCA 2b plays a role in regulating the sustained phase of Ca2+ transients caused by P2Y2 stimulation.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献