Conditional expression of hepatocyte nuclear factor-1β, the maturity-onset diabetes of the young-5 gene product, influences the viability and functional competence of pancreatic β-cells

Author:

Welters Hannah J,Senkel Sabine,Klein-Hitpass Ludger,Erdmann Silke,Thomas Heike,Harries Lorna W,Pearson Ewan R,Bingham Coralie,Hattersley Andrew T,Ryffel Gerhart U,Morgan Noel G

Abstract

Mutations in the gene encoding hepatocyte nuclear factor (HNF)1β result in maturity-onset diabetes of the young-(MODY)5, by impairing insulin secretory responses and, possibly, by reducing β-cell mass. The functional role of HNF1β in normal β-cells is poorly understood; therefore, in the present study, wild-type (WT) HNF1β, or one of two naturally occurring MODY5 mutations (an activating mutation, P328L329del, or a dominant-negative form, A263insGG) were conditionally expressed in the pancreatic β-cell line, insulin-1 (INS-1), and the functional consequences examined. Surprisingly, overexpression of the dominant-negative mutant did not modify any of the functional properties of the cells studied (including insulin secretion, cell growth and viability). By contrast, expression of WT HNF1β was associated with a time- and dose-dependent inhibition of INS-1 cell proliferation and a marked increase in apoptosis. Induction of WT HNF1β also inhibited the insulin secretory response to nutrient stimuli, membrane depolarisation or activation of protein kinases A and C and this correlated with a significant decrease in pancrease-duodenum homeobox-1 protein levels. The attenuation of insulin secretion was, however, dissociated from the inhibition of proliferation and loss of viability, since expression of the P328L329del mutant led to a reduced rate of cell proliferation, but failed to induce apoptosis or to alter insulin secretion. Taken together, the present results suggest that mature rodent β-cells are sensitive to increased expression of WT HNF1β and they imply that the levels of this protein are tightly regulated to maintain secretory competence and cell viability.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3