Pregnancy-enhanced store-operated Ca2+ channel function in uterine artery endothelial cells is associated with enhanced agonist-specific transient receptor potential channel 3-inositol 1,4,5-trisphosphate receptor 2 interaction

Author:

Gifford Shannon M,Yi Fu-Xian,Bird Ian M

Abstract

We have previously shown that endothelial cells (EC) derived from the uterine artery (UA) of both pregnant (P-UAEC) and nonpregnant (NP-UAEC) ewes show a biphasic intracellular free Ca2+ ([Ca2+]i) response after ATP stimulation. In each case, the initial transient peak, caused by the release of Ca2+ from the intracellular Ca2+ stores, is mediated by purinergic receptor-Y2 and is very similar in both cell types. However, the sustained phase in particular, caused by the influx of extracellular Ca2+, is heightened in the P-UAEC, and associates with an increased ability of the cells to demonstrate enhanced capacitative Ca2+ entry (CCE) via store-operated channels (SOCs). Herein we demonstrated that the difference in the sustained [Ca2+]i response is maintained for at least 30 min. When 2-aminoethoxydiphenyl borate (2APB) (an inhibitor of the inosital 1,4,5-trisphosphate receptor (IP3R) and possibly SOC) was used in conjunction with ATP, it was capable of completely inhibiting CCE. Since 2APB can inhibit SOC in some cell types and 2APB was capable of inhibiting CCE in the UAEC model, the role of SOC in CCE was first evaluated using the classical inhibitor La3+. The ATP-induced sustained phase was inhibited by 10 μM La3+, implying a role for SOC in the [Ca2+]i response. Since canonical transient receptor potential channels (TRPCs) have recently been identified as putative SOCs in many cell types, including EC, the expression levels of several isoforms were evaluated in UAEC. Expression of TRPC3 and TRPC6 channels in particular was detected, but no significant difference in expression level was found between NP- and P-UAEC. Nonetheless, we were able to show that IP3R2 interacts with TRPC3 in UAEC, forming a protein complex, and that this interaction is considerably enhanced in an agonist sensitive manner by pregnancy. Thus, while IP3R and TRPC isoforms are not altered in their expression by pregnancy, enhanced functional interaction of TRPC3 with IP3R2 may underlie pregnancy-enhanced CCE in the UAEC model and so explain the prolonged [Ca2+]i sustained phase seen in response to ATP.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3