Author:
Uilenbroek J Th J,van der Schoot P,Mattheij J A M,Swarts J J M
Abstract
Abstract
To study the effects of the antiprogestagen RU486 on luteal activity in pseudopregnant rats, adult female rats made pseudopregnant by sterile copulation were given daily injections with oil vehicle or with RU486 (2 mg/day) either during the entire period of pseudopregnancy (day 1 till day 14) or during the second half of pseudopregnancy (day 8 till day 14). Blood was taken every other day to measure serum concentrations of progesterone. At autopsy, on day 15, the weights of ovaries, isolated corpora lutea and pituitary glands were recorded. In a second study using the same experimental protocol, blood was taken via a jugular vein cannula on days 8, 9, 10 and 11 after induction of pseudopregnancy; on each of these days blood samples were taken at 0700, 0800 and 0900 h, and at 1700, 1800 and 1900 h to measure plasma concentrations of prolactin, LH and progesterone.
Administration of RU486 from day 1 of pseudopregnancy onwards had no effect on the increasing concentrations of serum progesterone during the first half of pseudopregnancy. Thereafter progesterone concentrations increased further in RU486-treated rats whereas they decreased in oil-treated pseudopregnant rats. Administration of RU486 from day 8 of pseudopregnancy onwards resulted in a decline in progesterone concentrations in serum on day 10 followed by ovulation on day 11. Plasma LH concentrations in rats treated with RU486 from day 1 of pseudopregnancy were higher than those in oil-treated rats on days 8, 9, 10 and 11. Treatment from day 8 of pseudopregnancy resulted in low LH concentrations at days 8 and 9 and the presence of a preovulatory surge of LH on the afternoon of day 10 (day of pro-oestrus). Plasma concentrations of prolactin measured in oil-treated rats showed two daily surges of similar magnitude in the morning and afternoon of days 8, 9, 10 and 11. In animals treated with RU486 from day 8 onwards, the afternoon surge on day 9 and the morning surge on day 10 were absent. This demonstrated that the luteolytic effect of RU486 when given during the second part of pseudopregnancy is due to a blockade in the afternoon surge of prolactin on day 9. In animals treated with RU486 from day 1 of pseudopregnancy onwards, prolactin in the early morning samples was low, while prolactin in the afternoon samples was highly elevated.
At autopsy on day 15, the weights of ovaries, corpora lutea and pituitary glands in animals treated with RU486 from day 1 were larger than those in oil-treated rats; this is in line with an increased secretion of prolactin. In contrast, in animals treated with RU486 from day 8, pituitary weight was not elevated and the increase in ovarian weight was due to the presence of two generations of corpora lutea.
In conclusion, whether or not RU486 is luteolytic in pseudopregnant rats depends on the time of administration: injection during the second half of pseudopregnancy inhibits prolactin secretion and induces luteolysis, while administration during the early phase of pseudopregnancy results in high concentrations of prolactin in the early afternoon and therefore prevents luteolysis.
Journal of Endocrinology (1995) 145, 449–454
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism