Inhibition of growth hormone bioactivity by recombinant human growth hormone-binding protein in the eluted stain assay system

Author:

Dattani M T,Hindmarsh P C,Brook C G D,Robinson I C A F,Marshall N J

Abstract

Abstract The effects of a recombinant human GH-binding protein (rhGHBP; amino acids 1–238) on GH stimulation of rat Nb2 lymphoma cells were examined with an eluted stain assay system (ESTA). This precise bioassay utilizes the colorimetric reduction by stimulated Nb2 cells of a yellow tetrazolium salt (3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) to a purple formazan as its end-point. The use of a lactogenic bioassay allowed the investigation of hGHBP specificity for human GH (hGH) as opposed to prolactin. rhGHBP inhibited pituitary hGH bioactivity in a dose-dependent manner. No significant inhibition of prolactin or ACTH bioactivity occurred. It was confirmed that recombinant 20 kDa hGH also stimulated the Nb2 cells and that its relative potency was ∼ 10% of that of pituitary-derived hGH. Stimulation by 20 kDa hGH was also inhibited by rhGHBP. The highly quantitative ESTA system demonstrated that the binding protein inhibited in a competitive manner. hGH activation of the Nb2 cells did not appear to be governed by a Michaelian first-order reaction. As might then be anticipated, the concentration of rhGHBP required for 50% inhibition of GH bioactivity (IC50) changed with agonist concentrations for both 20 kDa and 22 kDa hGH. However, with equimolar concentrations of these two isohormones, the IC50 of the binding protein was virtually identical. Potentiation of hGH bioactivity in vivo by low concentrations of hGHBP has been reported but was not observed in our in vitro system when tested over a wide range of binding protein concentrations. In conclusion, the ESTA bioassay system permitted a detailed characterization of the inhibition of hGH bioactivity by rhGHBP. The hormonal specificity confirms earlier radioligand binding studies, except that we found that the 20 kDa hGH variant interacts with the rhGHBP. Journal of Endocrinology (1994) 140, 445–453

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3