Differential expression of 11β-hydroxysteroid dehydrogenase 1 and 2 in the developing ovine fetal liver and kidney

Author:

Langlois D A,Matthews S G,Yu M,Yang K

Abstract

Abstract In adult mammals, liver and kidney are the two major sites of biosynthesis for 11β-hydroxysteroid dehydrogenase (11β-HSD) 1 and 2 respectively. In the present study, the expression of these two isozymes in the developing ovine fetal liver and kidney was characterized. Livers and kidneys were obtained from fetal sheep at days 85, 100–120 and 140–143 of gestation (term=145 days). Tissue levels of 11β-HSD2 mRNA were assessed by Northern blot analysis. 11β-HSD dehydrogenase and reductase activities in tissue homogenates were determined by a radiometric conversion assay using cortisol and cortisone as physiological substrates respectively. The unidirectional 11β-HSD2 dehydrogenase activity was identified by its distinct co-factor preference (NAD), and by its unique ability to metabolize dexamethasone (Dex). In the liver, 11β-HSD1 dehydrogenase and reductase activities were present by day 85, and their levels did not change between days 85 and 100–120 but increased more than twofold at days 140–143. This was consistent with changes we reported previously in the fetal hepatic 11β-HSD1 mRNA. 11β-HSD1 reductase activity was always higher than the dehydrogenase activity. 11β-HSD2 mRNA and activity were undetectable in the fetal liver at all three ages. By contrast, 11β-HSD2 mRNA was present in the fetal kidney by day 85, and its abundance increased progressively thereafter. There was a parallel increase in the renal 11β-HSD2 activity. Dex was also converted to 11-dehydro-Dex by the fetal kidney. In keeping with the absence of the full-length 11β-HSD1 mRNA, 11β-HSD1 activity was undetectable in the kidney. These results indicate that (1) 11β-HSD1 and 2 genes are differentially expressed and regulated in the fetal liver and kidney during development, (2) since the hepatic 11β-HSD1 reductase activity is always higher than the dehydrogenase activity, the fetal liver may be a potential extra-adrenal source of cortisol, and (3) 11β-HSD2 in the kidney may play a very important role in protecting the fetus from elevated levels of bioactive glucocorticoids. Journal of Endocrinology (1995) 147, 405–411

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3