Characteristics of BRIN-BG5 and BRIN-BG7, two novel glucose-responsive insulin-secreting cell lines produced by electrofusion

Author:

McClenaghan N H,Barnett C R,O'Harte F P M,Swanston-Flatt S K,Ah-Sing E,Flatt P R

Abstract

Abstract Two hybrid insulin-secreting cell lines (BRIN-BG5 and BRIN-BG7) were established by the novel approach of electrofusing RINm5F cells with New England Deaconess Hospital rat pancreatic islet cells. Cells were selected from the fusion mixture on the basis of insulin output. Wells showing five to ten times greater insulin output than parental RINm5F cells were selected, subcultured and cloned. Clonal BRIN-BG5 and BRIN-G7 cells grow as monolayers with epithelial morphology. The differences in doubling time of 28 and 20 h respectively were associated with morphological differences; the growth pattern and insulin content of each cell line remaining stable for over 50 passages. In acute 20-min tests, both cell lines showed peak secretory responses (1·9- and 1·8-fold respectively) to 8·4 mmol/l glucose. Membrane depolarization with 25 mmol/l K+ evoked 3·7- and 3·9-fold increases in insulin output. l-Alanine (10 mmol/l) also served to promote 2·4- and 1·6-fold increases in insulin release respectively. Increasing the Ca2+ concentration from 1·28 to 7·68 mmol/l potentiated this effect by 1·8- and 1·5-fold. Incubation with forskolin (25 μmol/l) or phorbol-12-myristate 13-acetate (10 nmol/l), in the presence of l-alanine, similarly enhanced the secretory effect on BRIN-BG5 and BRIN-BG7 cells by 1·3- to 2·1-fold and 1·2- to 1·5-fold respectively. The presence of a functional glucose-sensing mechanism in both cell lines was confirmed by the demonstration of the glucose transporter GLUT-2 and measurement of glucokinase activity. These functional properties suggest that insulin-secreting BRIN-BG5 and BRIN-BG7 cells represent two useful glucoseresponsive cell lines for future studies of the function of the pancreatic B-cell. Journal of Endocrinology (1996) 148, 409–417

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3