Effect of pituitary adenylate cyclase-activating polypeptide 38 on growth hormone and prolactin expression

Author:

Velkeniers B,Zheng L,Kazemzadeh M,Robberecht P,Vanhaelst L,Hooghe-Peters E L

Abstract

Abstract Time- and dose-dependent effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on prolactin (PRL) and growth hormone (GH) release were examined in static and dynamic rat pituitary cell incubations and on different pituitary cell (sub)populations separated according to their density on a discontinuous Percoll gradient. Quantitative in situ hybridization histochemistry allowed us to examine in parallel the effects of PACAP on PRL and GH gene expression. PACAP did not alter GH or PRL secretion in a dynamic superfusion system, in any cell population tested. Static incubations (30 min, 2–36 h) with PACAP 38 resulted in a significant increase in GH release and stimulated GH synthesis, as measured by the cytoplasmic accumulation of GH mRNA in the somatotrophs. These effects on synthesis and release were also observed after the enrichment of GH cells on Percoll gradients. PRL release was not altered by longer periods of incubation. Although no significant changes were observed in PRL secretion after 38 h, accumulation of cytoplasmic PRL mRNA was significantly stimulated in total pituitary cell suspension. After fractioning lactotrophs on Percoll gradients, the stimulatory effect of PACAP on PRL synthesis was lost. These results suggest that PACAP stimulates GH release and synthesis, and that it may act as a physiological regulator of this cell type. The PRL cell is not the most likely target cell type for PACAP. Effects observed on PRL synthesis in the total cell population may involve paracrine action of other hormone- or non-hormone-secreting cell types. Journal of Endocrinology (1994) 143, 1–11

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3