Abstract
Abstract
We have characterized the specific binding of glucagon in hepatocytes isolated from two teleost species, the American eel (Anguilla rostrata) and the brown bullhead (Ictalurus nebulosus). Specific glucagon binding was 9·3 and 10·7% in bullhead and eel hepatocytes respectively, after a 2-h incubation at 12 °C. Curvilinear Scatchard plots suggest the presence of two classes of binding sites with apparent dissociation constants (Kd) of 1·97 nm (high affinity) and 17·3 nm (low affinity) for bullhead and 2·68 and 22·9 nm for eel cells. The number of high-affinity binding sites per cell was significantly higher in the eel (10 413) than in the bullhead (3811). The number of high-affinity insulin-binding sites was approximately two times higher than that for glucagon in bullheads and the opposite in the eel hepatocytes. In competition experiments, insulin did not displace 125I-labelled glucagon binding in the hepatocytes of either species, while glucagon-like peptide-1(7–37) (GLP-1) displaced glucagon but only at high concentrations, suggesting separate glucagon- and GLP-1-binding sites. The rate of dissociation of hepatocyte-bound 125I-labelled glucagon was similar for both species. Preincubation of hepatocytes in 100 nm glucagon decreased the number of high-affinity glucagon-binding sites by approximately 55% in both species, while the Kd values remained unchanged. Glucagon bound to the cell surface is internalized by fish hepatocytes. These properties indicate that the glucagon binding to hepatocytes of these two teleost species is similar to that reported for mammalian hepatocytes.
Journal of Endocrinology (1994) 140, 217–227
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献