Continuous 14 day infusion of IGF-II increases the growth of normal female rats, but exhibits a lower potency than IGF-I

Author:

Conlon M A,Francis G L,Tomas F M,Wallace J C,Howarth G S,Ballard F J

Abstract

Abstract The effects of continuous 14 day infusion of recombinant human IGF-I (104 or 260 μg/day) or IGF-II (104, 260 or 650 μg/day) via s.c. implanted osmotic pumps were compared in young female rats in order to establish the relative efficacies of these two growth factors. Significant increases in body weight gain and feed conversion efficiency were achieved by 260 of IGF-I or 650 μg/day of IGF-II. These treatments were associated with increased nitrogen retention and increases in the fractional weights of kidneys, spleen, total gut and individual gut regions. There was an increase in the size of villi and muscularis lining the jejunum, suggesting an increased absorptive capacity of the gut. However there was no significant change in the amount of faecal nitrogen excretion when expressed as a percentage of nitrogen intake. Interestingly, IGF-II was at least as potent as IGF-I in increasing the depth of jejunal crypts. Infusion of equivalent doses of either IGF-I or IGF-II resulted in similar increases in circulating concentrations of the respective peptides, though IGF-II infusion dosedependently decreased plasma IGF-I concentrations from those of the controls. Plasma IGF-binding protein levels were increased by both IGF-I and IGF-II treatments, though IGF-I elicited greater responses. In summary, IGF-II can promote the growth of young female rats, although generally less potently than IGF-I. Journal of Endocrinology (1995) 144, 91–98

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3