Author:
Oben J.,Morgan L.,Fletcher J.,Marks V.
Abstract
ABSTRACT
The effect of gastric inhibitory polypeptide (GIP), glucagon-like peptide-1(7–36) amide, (GLP-1(7–36) amide), glucagon-like peptide-2 (GLP-2), glucagon and insulin on fatty acid synthesis in explants of rat adipose tissue from various sites was investigated. GIP, GLP-1(7–36) amide and insulin stimulated fatty acid synthesis, as determined by measuring the incorporation of [14C]acetate into saponifiable fat, in a dose-dependent manner, over the concentration range 5–15 ng/ml (0·87–2·61 nmol/l) for insulin and 0·5–7·5 ng/ml for GIP (0·10–1·50 nmol/l) and GLP-1(7–36) amide (0·15–2·27 nmol/l). Insulin and GIP caused a significantly greater stimulation of [14C]acetate incorporation into fatty acids in omental adipose tissue than in either epididymal or subcutaneous adipose tissue. Both GIP and GLP-1(7–36) amide had the ability to stimulate fatty acid synthesis within the physiological range of the circulating hormones. At lower concentrations of the hormones, GLP-1(7–36) amide was a more potent stimulator of fatty acid synthesis than GIP in omental adipose tissue culture; the basal rate of fatty acid synthesis was 0·41±0·03 pmol acetate incorporated/mg wet weight tissue per 2 h; at 0·10 nmol hormone/l 1·15±0·10 and 3·40±0·12 pmol acetate incorporated/mg wet weight tissue per 2 h for GIP and GLP-1(7–36) amide respectively (P < 0·01). GLP-2 and glucagon were without effect on fatty acid synthesis in omental adipose tissue. The study indicates that GIP and GLP-1(7–36) amide, in addition to stimulating insulin secretion, may play a direct physiological role in vivo, in common with insulin, in promoting fatty acid synthesis in adipose tissue.
Journal of Endocrinology (1991) 130, 267–272
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
184 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献