Testicular steroidogenesis in the testicular feminized (Tfm) mouse: loss of 17α-hydroxylase activity

Author:

Murphy L.,O'Shaughnessy P. J.

Abstract

ABSTRACT Testicular feminized (Tfm) mice are totally insensitive to androgen and may be used to study the role of the androgen receptor in normal development and function. We have examined testicular and Leydig cell steroidogenesis in Tfm mice. Serum bioactive LH was high in Tfm mice but serum testosterone was low and this was associated with a severe reduction in testicular testosterone production in vitro. Examination of [3H]pregnenolone metabolism by testes of Tfm mice indicated that progesterone, rather than testosterone, was the major steroid produced. Leydig cells were isolated from normal and Tfm mice and from normal mice in which testicular descent was surgically prevented before puberty. As in whole testes, androgen production in response to human chorionic gonadotrophin was severely reduced in Leydig cells from testes of Tfm mice compared with normal or cryptorchid groups. In contrast, progesterone production by Leydig cells from testes of Tfm mice was markedly increased in comparison with other groups. Total steroid production (progesterone plus androstenedione plus testosterone), however, was only 24% of normal in Leydig cells from Tfm mice. The pattern of steroid production by Leydig cells from cryptorchid testes was similar to control, although total steroid production was reduced to about 50% (this was significantly higher than the Tfm group, P<0·05). The high progesterone/androgen ratio in testes from Tfm mice suggested that 17α-hydroxylase was depleted in these animals. To confirm this, activity of the four major steroidogenic enzymes associated with the smooth endoplasmic reticulum was measured. Activities (per testis) of 3β-hydroxysteroid dehydrogenase and 5α-reductase were normal in Tfm and cryptorchid mice but, as expected, 17α-hydroxylase activity was only 2·4% of control and 4·5% of cryptorchid testes. 17-Ketosteroid reductase activity was markedly reduced in cryptorchid testes (14·4% of control) but there was a further reduction in testes from Tfm mice to 0·1% of control. Results show that the Tfm mutation is associated with marked loss of 17α-hydroxylase and 17-ketosteroid reductase activities. This suggests that these enzymes may require receptor-mediated androgen stimulation during development to express normal activity. Journal of Endocrinology (1991) 131, 443–449

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3