Cinnamic acid based thiazolidinediones inhibit human P450c17 and 3beta-hydroxysteroid dehydrogenase and improve insulin sensitivity independent of PPARgamma agonist activity

Author:

Arlt W,Neogi P,Gross C,Miller WL

Abstract

Thiazolidinediones improve insulin sensitivity in type 2 diabetes mellitus by acting as peroxisome proliferator-associated receptor gamma (PPARgamma) agonists, and decrease circulating androgen concentrations in polycystic ovary syndrome by unknown mechanisms. Some thiazolidinediones directly inhibit the steroidogenic enzymes P450c17 and 3beta-hydroxysteroid dehydrogenase type II (3betaHSDII) by distinct mechanisms. We synthesized five novel thiazolidinediones, CLX-M1 to -M5 by linking a 2,4-thiazolidinedione moiety to a substituted alpha-phenyl cinnamic acid previously shown to have glucose-lowering effects. Using yeast microsomes expressing human P450c17 and 3betaHSDII we found that cinnamic acid methyl esters with a double bond in the thiazolidinedione core structure (M3, M5) were stronger inhibitors of P450c17 than methyl esters with the conventional core (M1, M4). These four compounds inhibited 3betaHSDII equally well, while the free cinnamic acid analog (M2) did not inhibit either enzyme. Thus, the inhibition of P450c17 and 3betaHSDII by these novel thiazolidinediones reveals structure-activity relationships independent of PPARgamma transactivation. PPARgamma transactivation was moderate (M1), weak (M2, M3) or even absent (M4, M5). While the PPARgamma agonist activity of M1 was only 3% of that of rosiglitazone, both increased glucose uptake by 3T3-L1 adipocytes and reduced serum glucose levels in ob/ob and db/db mice to a similar extent. The similar glucose-lowering effects of M1 and rosiglitazone, despite their vast differences in PPARgamma agonist activity, suggests these two actions may occur by separate mechanisms.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3